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In constructing mathematical descriptions of mechanical systems, automatic control systems, 
etc. from measurements of the processes at the input and output of the system (i.e. in solv- 
ing the identification problem) one often meets with the fact that the process at the system 
output is random even with a strictly determined input signal (provided the process at the 
system output is identically equal to zero when there is no signal at the input). This fact 
testifies to the “stochasticity” of the system under consideration; a sufficiently complete 

mathematical model of such a system must contain parameters which are random functions 
of time, and the identification of such a system must include the determination of the stat- 
istical characteristics of these variations of the parameters. One of the uses of these char 
acteriatics lies in estimating the quality and reliability of systems (e.g. in those cases 

where the “nominal values of the parameters lie near the boundary of the stability domain). 

Biomechanics affords several examples of stochastic systems. Among them are the prob- 
lem of the effect of vibrations on the human organism [If and the problem of constructing a 

mathematical model of a human operator as a link in an automatic control system [2]. 

In the present paper we consider a system described by au ordinary differential equation 

whose coefficients are time-independent and time-independently constrained random firnc- 

tions; the order of the equation is assumed to be known. 9 sinusoidal force is applied to the _ 
system. In accordance with the approximate solution of the “straightforward” problem of 
statistical dynamics [3] we construct an iterative process for finding the unknown moment 

functions of the system coefficients from the measured moment functions of the process at 
the output. As an example we consider a second-order system with a randomly varying damp- 

ing coefficient. 

1. Let us investigate the steady motion of a system described by the differential equa- 
tion 

[Qo b-4 + ~Qr(b ~$1 z = Po (P) + @', (t, p)] y, ?/ = COSW,~ 
n-1 

Qo@) = Pn -i- 2 “kPk, I-J” (pi = i c,pk, 
d 

1 =ll 

P”‘x (fit < >a) 

I=0 

Qi (4 p) = nxt a&,. iti ph, 

*I 

p1 (t‘ Pf = x ck9k (l) pk (1.1) 
?=O i =o 

Here ,u, ak# and ck are unknown constants; [i(t) and vk(t) are time-independent and time 

independent and time-independently constrained centered ergodic random functions whose 

statistical characteristics must be determined; the roots of the polynomial Qa are assumed 

to be distinct and to have negative real parts. We assume that Eq. (1.1) has a particular 
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solution x(t) all of whose moments are finite (the problem is meaningless otherwise), and 

that realization of the process z(t) for various values of ou are known, 
Let us assume that the parameter p is small and write out the function x(t) in series 

form 

We then obtain the following expansions for the average value and correlation function 
of the process z(t) (the square brackets will generally be used to denote averaging over 
the set of realizations): 

<z (Q> = zu (t) + f&* <xz (t>, + **. 0.3) 

(ix (4 - (r (#l[x tt + 7) - (2: (t + '6))l) = pa (q (t) 21 (t + 2)) + 

+-pB,:[(q (4 q (t -I- T)) + 0% tw1 tt 4- Z))l -I- **a (1.4) 

fas will become evident below* <x1(t)> = 0 by virtue of the fact that the average values of 
the random functions (‘ft) and v(t) are equal to zero). Similar expansions are valid for the 

central moment functions of higher orders; the first term of the series for the central k-th 
order moment of the process z(t) is simply the corresponding k-th order moment of the pro- 
cess x,(t) taken with its coefficient fl Jr. The convergence of these expansions for sufficient- 
ly small p can be proved on the basis of the condition of time-independence and bounded- 

ness of the functions e(t) and q(t). In solving the “str~ghtfo~ard” problem where the mo- 

ments of these functions are known we can also find a lower estimate of the convergence 
interval. Convergence cannot be estimated in advance in the problem under consideration 

(more precisely, only rough qualitative estimates are possible), and this estimate is estab. 
lished in the course of direct computation of the successive approximations. 

Substituting series (1.2) into Eq. (1.11, we obtain the infinite system of equations 

The particular solutions of these equations corresponding to the steadystate oscillations 
of the system can be written as 

t 
q(t) -= s G (t - t’) [- QI (f, P’) xo (t’) -t- PI (f, P’) Y @')I dt’ ( g =zz -$ 1 (1.7) 

---co 

--co 

where G (8) is Green”5 function for the operator Qo 

(q, denote the roots of the polynomial QoA OR the basis of relations (1.6) to (1.8) we can 
apply the averaging operation and express the average value and central moments of the 
process x(t) as au infinite series whose terms are determined by the moments of the random 
functions t(t) and q(t). Specifically, the first term of series (1.4) is given by 

t t+r 
I.@ <Xl (q Xl (C + z’), = p s s G (t - t’) C (t + z - t”) f[- QI (t’, 2) xo (t’) + 

--co -m 

+ PI 0’2 P’) Y WI [- Qr (f’s P”) xo (f’) + PI (t”, ~“1 Y @")I> dt’dt” (1.40) 

Before turning to the *‘inverse” problem let as show that if series (I.21 converges in the 
mean and mean-square, then the process r(t) can be expressed in the form x(t) = f(t) COB o~o 
(t) + g(t) sin o,, t, where f(t) and g (t) are time-independent and time-independently constrain- 
ed fin the broad sense) random processes. In fact, on the basis of (1.6) to (1.8) we can 
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write the k-th term of series (1.2) as a linear combination of terms of the type 

1’ k 
x eiw”(“l-‘Jd . . . (1.11) 

and similar integrals containiug the functions ~($1 and products of the functions c(t) and 
~(1). Here r 

<%, 

is the/ domain of k-dimensional space defined by the condition - a0 < #, < 
<...<?I, < t; th e asterisk denotes the complex conjugate. From (1.11) we can read- 

ily see that the time independence and time-independent constrain (in the narrow sense) of 
the processes f(t) and q(t) imply the time independence and time-independent constraint 
of the processes zt(b), zk(t), z,* (t), and z,,(t) (in the broad sense), so that the mean-square 

convergence of series (1.2) is sufficient to validate the above statement. This implies, 

specifically, that the values of the process x(t) at the instants tk satisfying the conditions 

hi - tl = (2nlo,) (k - 1), k - 1 = 0, k 1, * 2 )... (1.12) 

coincide with the values of some random process which is time-independent in the broad 
sense. Similarly we can,show that the higher-order moments of this process likewise de- 

pend only on the differences between the values oft (provided series (1.2) converges for 
the corresponding moments). However, the ergodicity of this process is assumed by hypo- 
thesis; if this condition is not fulfilled, then the problem of identification from the family 
of realizations of x(t) dependent on just a single parameter w0 becomes meaningfess. 

2. Let us assume that we know the average value and central moments of the process 
x(t) computed for the values t = tkr tl ,,.. satisfying condition (1.12). Relations (1.6) (the 
solution of the first Eq. of (1.5)) and (1.10). and the similar relations for the higher-order 
moments of the process z,(t) will be our basis for determining the statistical characteris- 

tics of the random functions r(t) and v(t). Since the parameters b, and To of the function 
r,(t) and the moments of the process xl(t) are unknown, we shall find them by successive 

approximations from the known sums of infinite series (1.3) and (1.4) and similar series for 

the higher-order central moments of the process z(t). We begin by setting 

so (tj = Cs (t)) = [<I (t))Z + <g (t)>zl”” sin [o,t -+- arc tg ((g (t)> I <I (t)t!] (2.1) 

The quantities <f(t)> and <g(t)> are here determined on the basis of r(t) measured for 
two fsmiIies of points tk satisfying conditions (1.12) and corresponding to the zeros of the 
functions sin G.+ and cos Oat. As a result we arrive at the problem of determining the coef- 

ficients of the first Eq. of (1.5) from its solution (1.6) where b, and gt, are known functions 

of the parameter oo. As is shown in [4] this probl em reduces to the approximation of the 

function b,( 6) exp [i ‘po (4~1 o t e complex variable [= x + iw, whose values are speci- f h 
fied on the imaginary axis by a function which is a ratio of polynomials of degrees m and n 
and has poles in the left half-plane only; the zeros and poles of this function determine the 
roots of the polynomials P, (4) and Q (q), respectively. Some methods for practical construc- 

tion of the solution will be found in ,5 , r 7 for example. 
Now let us equate the correlation function of the process r(t) to the first term of series 

(1.4) for S values oo, where S must not be smaller than the number of nonzero elements of 
the matrix of correlation functions K(v) of the processes t(t) and q(t). Let US convert to 
the variables u = t”+ t’ and v = t”- t’and integrate over u in relation (1.10), in which 

‘kl ckS b 01 (Foe and (I (9) are now known. Substituting the known values of sin (mock + (PO) 

and cos (motk + ‘po) into the result, we obtain a system’of S integral first-order Fredholm 
integral equations in the function K (~1. In the general case such a system must be solved 
approximately, as is often done in identification problems [6]. We accomplish them by spec- 
ifying functional relations for K (u) which contain a finite number of unknown parameters y 
determined hy the method of least squares. However, it is sometimes possible (see the ex- 
arrzple in Section 3) to obtain directly the inversion formula which expresses K(U) in terms 
of the known functions R1(7)= ~r2<z,(tk)X1 (tk + T)>* 
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The next step in the iteration process consists in refining the values of ok and ck by 

using two terms of the series in the exnression for <x(t)>. To this end we substitute the 

known functions K (u) into the relation for <x2(t)> constructed on the basis of (1.7) and 

(1.8) (computations of <x2(t)> for the special case m = 0 will be found in [3]). Setting x,, 

(t) = <z(t)> - p2<x2(t)>, we obtain refined values for bu and ‘pe ; returning to the solu- 

tion of the first problem, we obtain improved values for ak and ck, and hence an improved 
function G (@. 

The general scheme of the iteration process we.are proposing consists in the following. 

Each step involving the addition of terms of order CL’ begins with consideration of the rela- 

tion for the r-th moment of the process x1(t) (as noted above, the aforementioned moment 
taken with the coefficient 1~’ coincides with the corresponding central moment of the process 

x(t)). From this relation we obtain the values of the parameters which determine the r-th 

order moments of the processes t(t) and r/(t) by a method similar to that just described for 

second-order moments. Then, having determined the terms of order ,I.L’ appearing in the ser- 

ies for the s-th order central moments of the process x(t) (s < r), we can refine z,(t) and 
the s-th order moments of the process x,(t); we then refine the values of ok and ck and the 
values of the parameters which determine the s-tb order moments of (the processes t(t) and 

v(t) (26 s & r - 1). ‘Xe note, however, that such a scheme using information on the higher- 

order moments of the process x(t) is not the only acceptable one: refinement involving the 

addition of terms of’order pr to the series for the s-th order moment of the process x(t) (s < 

< r) can be effected directly by specifying (to within a finite number of parameters 6) the 

expressions relating the r-tb order moments of the processes f(t) and 7((t) to the lower-order 

moments. In this case the parameters 8 are determined simultaneously with the refinement 

of the previously determined values of the parameters y which determine the lower-order 

moments. 

In the case of “quasiharmonic” systems which are reducible to standard form 171, the 

relation for RI(~) can be simplified substantially by first averaging over the period of the 
terms not containing the functions t(t) and v(t). TI ie approximate relations obtained through 

this simplification are useful, for example, in the solution of problems on an analog compu- 

ter by direct selection of the model parameters. A sample solution of the problem by this 

method appears below. 

3. Let us consider, for example, the following second-order system with a randomly vary- 

img damping coefficients: 

The function G (6) in this case is given by 

G (0) = 01-i exp (- ut3) sin CII#, 01 = 1/6P - CC (3.2) 

For simplicity we assume that the values of CL and :I are known and pose the problem of 
detenuining the correlation function p2K (v) of the process ~[(t) from one realization of the 

process x(t). The parameters b, and v ,, in our case are given by 

b, = a [( P2 - wo2)2 f ~cc~o,,~]-‘~~~ ‘p. = arc tg [( Q2 - oas) / 2aw,] 

Constructing Expression (l.lO), makin g use of (3.2). and integrating over the variable 
u = t”+ t’ (we are considering the case sin (CL),, tk + ‘p,,) = l), we obtain 

00 
n 
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In deriving relation (3.3) we made use of the evenness property of the function K(u) and 
the condition exp ( f i oO T) = 1. 

We note that in this case first-order integral Eq. (3.3) 

known function K (u) [8]. This solution is of the form 

can be solved directly for the un- 

4 paK (v) = _ 
I/at 

(abooo / W-a 5 @ (a) {[C+a + D+ (00 + 01 - o)] [aa + (oo+ol--o)y+ 

+ [C+a + D’;Q + w + a)1 [aa + (00 + al+ co)*]-’ + 

+ [C-a - D- (00 - ml+ @)I [aa + (00 - al+ oJa]-’ + 

+ [c-u - D- (co,, - 01 -co)] [ci2 + (coo - co1 - cQ]-‘}-’ e-- do 

where @(or) is the spectral density of the “sampling” process c(zI(tk), 

(3.4) 

Here we assume that the function K(u) satisfies the requirements formulated in [8] which 
guarantee the uniqueness and correctness of the resulting solution. We need merely bear in 
mind that the values of R 1 (7) are known only for the discrete set of points 7,” 2nilou; 

the exactness of the resulting estimates will not be considered. 
We note that the resulting solution can also be used in the case where some unmeasura- 

ble random disturbance of the form PC(~) is added to the useful signal defined by the right 
side of Eq. (3.1). In fact, we can readily show that the components of the correlation func- 
tion of the process x,(t) which correspond to this disturbance do not contain the factor 
b,2. Hence, these components can be isolated by varying the amplitude o of the useful sig- 

nal, whereupon the function K(w) can be determined by the method described above. 
Now let us illustrate a result obtained through the averaging method (see [9], where a 

similar technique is used to investigate several other “straightforward” problems). For 
simplicity let us consider the case of exact resonance (% = n). Setting u = ~CI. t and 

o = ,~at and carrying out the substitution of variables 

x (t) = b (t) sin [o,t + cp (t)f, dx (t) / dt = o,b (t) cos [o,t + cp (t)] (3.5) 

we convert from (3.1) to equations in standard form in the functions b(t) and W(t). After the 
terms not containing t(t) in these expressions have been averaged over the period 2rr/oo, 
the solutions for the average amplitude and phase, denoted by b and -qas before, are sought 
in series form, 

b (t) = b, + pb, (t) + . ..I T (t) = ‘PO -t PL(pI (t) + .e. 
The final expression for the first approximation of the correlation function of the random 

component p b 1 of the amplitude is 

co 

P (br (t) bl (r + r)> = ‘/a p2ubo2 
s 

K(v) e -’ ’ o-’ ’ ( 1 + l/z cos 2oov) dv (34 
-.x 

Comparing (3.6) with “exact first approximation” (3.3), we can estimate the domain of 
applicability of the averaging method. It is easy to verify that these expressions can be 
made to coincide by rejecting terms of higher order of smallness in u /a in the case OO= 

= n and setting 

cos(wo-mr)z z=:, sin ((o. - or)z-_,O (3.7) 
cos(oo-mo,)v~~, sin ((o. - (6r) vz 0 (3.8) 

The requirement that u m be small is self-evident. Fulfillment of this condition guaran- 
tees fulfillment of condition (3.8). As regards conditions (3.7), they are equivalent to the 
condition 9~ < n(ti/~ )2 and reflect to the known [7] fact that the averaging method af- 

fords a good approximation only over time intervals of order l/p. 
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